Java程序辅导

C C++ Java Python Processing编程在线培训 程序编写 软件开发 视频讲解

客服在线QQ:2653320439 微信:ittutor Email:itutor@qq.com
wx: cjtutor
QQ: 2653320439
School	
  of	
  Physics	
  and	
  Astronomy,	
  University	
  of	
  Manchester	
  
PHYS20762	
  
ComputaAonal	
  Physics	
  
Hywel	
  Owen	
  
Part	
  1:	
  MATLAB	
  and	
  Data	
  Analysis	
  
Lecture	
  1:	
  IntroducAon	
  to	
  ComputaAonal	
  Physics	
  
What	
  is	
  this	
  course?	
  
•  This	
  is	
  a	
  course	
  on	
  ComputaAonal	
  Physics:	
  
–  The	
  use	
  of	
  algorithms	
  and	
  numerical	
  methods	
  to	
  perform	
  data	
  analysis	
  and	
  
simulaAon	
  in	
  support	
  of	
  experimental	
  and	
  theoreAcal	
  physics	
  
	
  
•  There	
  are	
  3	
  pillars	
  of	
  physics:	
  
–  Theory	
  
–  Experiment	
  
–  SimulaAon	
  
PHYS20762	
  Lecture	
  1	
  
Course	
  Informa3on	
  
•  The	
  real	
  course	
  website:	
  
–  hPp://theory.physics.manchester.ac.uk/~hywel/teaching/phys20762/	
  
	
  
•  But	
  material	
  is	
  also	
  posted	
  on	
  Blackboard	
  
–  Blackboard	
  is	
  linked	
  to	
  the	
  website	
  above	
  
	
  
PHYS20762	
  Lecture	
  1	
  
Should	
  you	
  be	
  here?	
  
•  If	
  you	
  are	
  a	
  TheoreAcal	
  Physics	
  student:	
  
–  Go	
  away.	
  You	
  should	
  be	
  on	
  PHYS20872	
  Theory	
  CompuAng	
  Project.	
  
–  Were	
  you	
  at	
  the	
  orientaAon	
  session	
  yesterday?	
  No?	
  Then	
  talk	
  to	
  Niels	
  Walet.	
  
•  If	
  you	
  not	
  a	
  TheoreAcal	
  Physics	
  student:	
  
–  CongratulaAons!	
  
–  You	
  should	
  be	
  here.	
  
•  Can	
  you	
  do	
  both	
  PHYS20762	
  and	
  PHYS20872?	
  
–  No.	
  
•  Can	
  you	
  do	
  both	
  AddiAonal	
  Lab	
  and	
  PHYS20762?	
  
–  No.	
  
•  What	
  is	
  the	
  difference	
  between	
  PHYS20762	
  and	
  PHYS20872?	
  
–  PHYS20762	
  is	
  for	
  Normal	
  students	
  
–  PHYS20872	
  is	
  for	
  Theory	
  students	
  
PHYS20762	
  Lecture	
  1	
  
Why	
  should	
  you	
  do	
  this	
  course?	
  
•  Technical	
  compuAng	
  underlies	
  prePy	
  much	
  all	
  of	
  the	
  jobs	
  you	
  
are	
  likely	
  to	
  do	
  a]er	
  graduaAng	
  
•  You	
  are	
  about	
  90%	
  likely	
  to	
  be	
  doing	
  scienAfic	
  programming	
  
a]er	
  you	
  leave	
  
Manchester	
  Graduate	
  Des3na3ons	
  
ScienAc/CompuAng	
  
Finance/Management	
  
Postgrad/Research	
  
Other	
  
PHYS20762	
  Lecture	
  1	
  
A	
  couple	
  of	
  examples	
  
•  My	
  best	
  friend	
  ScoP	
  
•  Graduate	
  physics	
  (Edinburgh)	
  
•  PhD	
  in	
  crystallography,	
  including	
  
wriAng	
  of	
  experimental	
  control	
  
and	
  data	
  analysis	
  
•  Then	
  programming	
  GUIs	
  in	
  C++	
  
for	
  mobile	
  phone	
  manufacturer	
  
•  Now	
  wriAng	
  trading	
  so]ware	
  in	
  
C++	
  for	
  CiAbank	
  in	
  London	
  
•  ££££	
  
•  Me	
  
•  Graduate	
  physics	
  (Manchester!)	
  
•  PhD	
  in	
  liquid	
  crystals,	
  wriAng	
  data	
  
acquisiAon	
  and	
  data	
  analysis	
  
•  WriAng	
  control	
  so]ware	
  for	
  
diagnosAc	
  staAon	
  on	
  parAcle	
  
accelerators	
  (e.g.	
  SRS);	
  VB,	
  
LabVIEW,	
  etc.	
  
•  WriAng	
  so]ware	
  to	
  simulate	
  
behaviour	
  of	
  new	
  parAcle	
  
accelerators	
  (e.g.	
  DIAMOND)	
  
www.diamond.ac.uk	
  
•  Carrying	
  this	
  on	
  at	
  Manchester	
  
PHYS20762	
  Lecture	
  1	
  
What	
  languages/plaAorms	
  are	
  actually	
  used	
  in	
  the	
  ‘real	
  world’?	
  
Commercial	
  
•  Compiled	
  
–  C/C++	
  (esp.	
  Finance)	
  
•  Vis-­‐C,	
  C#,	
  Obj-­‐C,	
  Java	
  
•  Interpreted	
  
–  Python	
  (e.g.	
  Google)	
  
–  (Ruby,	
  Javascript)	
  
•  Environments	
  
–  LabVIEW	
  (esp.	
  for	
  DAQ)	
  
–  Excel	
  
Research/Scien3fic	
  
•  Compiled	
  
–  C/C++	
  
–  Fortran	
  
•  F90,	
  F95	
  etc.	
  
•  Interpreted	
  
–  Python	
  
•  Environments	
  
–  MATLAB	
  
–  MathemaAca	
  
PHYS20762	
  Lecture	
  1	
  
Other languages 
(Pascal, Visual Basic, Perl, Tcl)  
Other packages 
(Maple, Mathcad, IDL, Origin)  
Structure	
  of	
  the	
  Course	
  
•  Part	
  1:	
  MATLAB	
  and	
  Data	
  Analysis	
  
–  Lecture	
  1:	
  The	
  MATLAB	
  environment	
  
–  Lecture	
  2:	
  Working	
  with	
  data	
  in	
  MATLAB	
  
–  Lecture	
  3:	
  Data	
  analysis	
  and	
  fiong	
  in	
  
MATLAB	
  
–  Lecture	
  4:	
  File	
  input	
  and	
  output	
  in	
  MATLAB	
  
•  Part	
  2:	
  Numerical	
  Methods	
  
–  Lecture	
  5:	
  IntroducAon	
  to	
  numerical	
  
methods	
  
–  Lecture	
  6:	
  Numerical	
  soluAon	
  of	
  equaAons	
  
–  Lecture	
  7:	
  Numerical	
  methods	
  in	
  MATLAB	
  
–  Lecture	
  8:	
  User-­‐defined	
  funcAons	
  in	
  
MATLAB	
  
•  Part	
  3:	
  Monte-­‐Carlo	
  Techniques	
  
–  Lecture	
  9:	
  Random	
  Numbers	
  and	
  Monte	
  
Carlo	
  IntegraAon	
  
–  Lecture	
  10:	
  Monte	
  Carlo	
  ParAcle	
  Transport	
  
•  MATLAB	
  PracAce	
  (Week	
  1)	
  
•  Projects:	
  
–  Project	
  1	
  (Weeks	
  2-­‐4):	
  
Analysis	
  of	
  experimental	
  spectrum	
  data	
  
–  Project	
  2	
  (Weeks	
  5-­‐8):	
  
Numerical	
  integraAon	
  of	
  the	
  damped	
  
oscillator	
  equaAon	
  
–  Project	
  3	
  (Weeks	
  9-­‐12):	
  
PenetraAon	
  of	
  neutron	
  through	
  shielding	
  
•  12	
  Half	
  days	
  in	
  the	
  laboratory	
  3.58	
  
(½	
  on	
  Tue,	
  ½	
  on	
  Fri)	
  	
  
PHYS20762	
  Lecture	
  1	
  
Course	
  Aims	
  and	
  Learning	
  Outcomes	
  
•  To	
  familiarise	
  the	
  students	
  with	
  pracAcal	
  techniques	
  for	
  using	
  computers	
  
in	
  physics.	
  
•  On	
  compleAon	
  successful	
  students	
  will	
  be	
  able	
  to:	
  	
  
1.  write	
  MATLAB	
  programs	
  involving	
  computaAons	
  and	
  graphics;	
  	
  
2.  use	
  MATLAB	
  to	
  analyse	
  and	
  fit	
  experimental	
  data;	
  	
  
3.  use	
  numerical	
  methods	
  (Euler,	
  Verlet)	
  to	
  find	
  soluAons	
  of	
  an	
  ordinary	
  
differenAal	
  equaAon	
  and	
  thereby	
  to	
  analyse	
  the	
  behaviour	
  of	
  a	
  physical	
  
system	
  (e.g.	
  damped	
  oscillator);	
  	
  
4.  understand	
  the	
  principles	
  of	
  the	
  Monte	
  Carlo	
  method	
  and	
  its	
  applicaAon	
  to	
  
parAcle	
  transport	
  
5.  use	
  the	
  Monte	
  Carlo	
  method	
  to	
  simulate	
  parAcle	
  transport	
  through	
  a	
  given	
  
physical	
  system	
  (e.g.	
  neutrons	
  through	
  shielding)	
  
	
  
PHYS20762	
  Lecture	
  1	
  
Assessments	
  
•  You	
  will	
  write	
  3	
  project	
  reports	
  
•  Assessment	
  is	
  based	
  on	
  the	
  content	
  of	
  these	
  reports	
  
•  Read	
  each	
  project	
  brief	
  (on	
  the	
  module	
  website)	
  and	
  follow	
  it!	
  
•  All	
  the	
  project	
  briefs	
  and	
  assessment	
  forms	
  (with	
  criteria)	
  are	
  already	
  on	
  
the	
  website.	
  
	
  
•  Each	
  project	
  has	
  a	
  bonus	
  secAon	
  –	
  you	
  are	
  encouraged	
  to	
  try	
  them,	
  
they’re	
  not	
  that	
  hard.	
  (hint:	
  don’t	
  think	
  of	
  them	
  as	
  bonuses…)	
  
•  Extra	
  marks	
  may	
  be	
  awarded	
  for	
  invenAveness	
  –	
  we	
  want	
  you	
  to	
  think!	
  
•  Projects	
  are	
  to	
  be	
  submiPed	
  in	
  paper	
  form:	
  
–  Sorry,	
  what?	
  This	
  is	
  a	
  compuAng	
  course,	
  and	
  you	
  want	
  a	
  report,	
  in	
  paper	
  
format???	
  
–  We	
  tried	
  electronic,	
  and	
  it’s	
  too	
  much	
  hassle	
  both	
  for	
  you	
  and	
  for	
  us	
  
–  We	
  have	
  to	
  print	
  them	
  out	
  to	
  mark	
  them	
  up	
  for	
  your	
  feedback	
  anyway	
  
PHYS20762	
  Lecture	
  1	
  
Some	
  Recommended	
  Texts	
  
•  Chapman,	
  S.J.	
  MATLAB	
  Programming	
  for	
  Engineers	
  (Brooks	
  and	
  Cole	
  2000)	
  	
  
•  Higham,	
  D.J.	
  &	
  Higham,	
  N.J.	
  MATLAB	
  Guide	
  (Philadelphia:	
  Society	
  for	
  
Industrial	
  and	
  Applied	
  MathemaAcs)	
  2nd	
  ediAon	
  (2005)	
  	
  
•  Garcia,	
  A.L.	
  Numerical	
  Methods	
  for	
  Physics	
  (PrenAce	
  Hall	
  1994)	
  	
  
•  Kerningham,	
  B.W.	
  &	
  Ritchie,	
  D.M.	
  The	
  C	
  programming	
  Language	
  (PrenAce	
  
Hall)	
  2nd	
  ediAon	
  (1988)	
  	
  
•  Barlow,	
  R.J.	
  &	
  BarneP,	
  A.R.	
  Compu>ng	
  for	
  Scien>sts,	
  Principles	
  of	
  
Programming	
  with	
  Fortran	
  90	
  and	
  C++	
  (John	
  Wiley	
  and	
  Sons	
  Ltd	
  ,	
  1998)	
  	
  
•  There	
  are	
  not	
  a	
  lot	
  of	
  good	
  texts	
  for	
  what	
  we’re	
  doing.	
  
PHYS20762	
  Lecture	
  1	
  
Two	
  Basic	
  Messages	
  About	
  This	
  Course	
  
•  Not	
  everything	
  you	
  need	
  to	
  know	
  for	
  the	
  projects	
  is	
  in	
  the	
  lecture	
  notes	
  
–  APend	
  the	
  lectures,	
  ask	
  quesAons!	
  
–  You	
  will	
  learn	
  a	
  lot	
  by	
  doing	
  the	
  projects:	
  get	
  feedback	
  in	
  the	
  lab	
  sessions	
  
•  Not	
  everything	
  in	
  the	
  lectures	
  is	
  about	
  the	
  projects	
  
–  We’re	
  trying	
  to:	
  
–  a)	
  Make	
  the	
  rest	
  of	
  your	
  degree	
  easier	
  
–  b)	
  Expose	
  you	
  to	
  ideas	
  that	
  you	
  can	
  learn	
  more	
  about	
  by	
  yourselves	
  later	
  
–  c)	
  Generally	
  educate	
  you	
  in	
  this	
  topic	
  
PHYS20762	
  Lecture	
  1	
  
Rubin	
  Landau’s	
  Rules	
  of	
  Educa3on	
  
1.	
  Most	
  of	
  educaAon	
  is	
  learning	
  what	
  the	
  words	
  mean;	
  the	
  concepts	
  are	
  
usually	
  quite	
  simple	
  once	
  you	
  understand	
  what	
  you	
  are	
  being	
  told.	
  	
  
	
  
2.	
  Confusion	
  is	
  the	
  first	
  step	
  to	
  understanding.	
  
	
  
3.	
  TraumaAc	
  experiences	
  tend	
  to	
  be	
  the	
  most	
  educaAonal	
  ones.	
  	
  
Why	
  MATLAB?	
  
•  MATLAB	
  is	
  a	
  terrible	
  programming	
  language	
  
•  You	
  could	
  do	
  this	
  course	
  in,	
  for	
  example,	
  C++	
  
•  BUT….	
  
–  This	
  is	
  not	
  a	
  course	
  in	
  programming	
  (you	
  did	
  that	
  last	
  semester)	
  
–  This	
  is	
  a	
  course	
  on	
  algorithms,	
  i.e.	
  implemenAng	
  physics	
  using	
  compuAng	
  
–  The	
  language	
  is	
  secondary	
  
–  Speed	
  does	
  not	
  maPer	
  for	
  our	
  course	
  (hint:	
  it	
  does	
  a	
  bit)	
  
PHYS20762	
  Lecture	
  1	
  
PHYS20762	
  Lecture	
  1	
  
Interlude…	
  
Interlude:	
  How	
  do	
  programmers	
  spend	
  their	
  3me?	
  
•  Q:	
  How	
  much	
  of	
  a	
  typical	
  programmer’s	
  day	
  is	
  spent	
  actually	
  
programming?	
  	
  
PHYS20762	
  Lecture	
  1	
  
Interlude:	
  How	
  do	
  programmers	
  spend	
  their	
  3me?	
  
•  Q:	
  How	
  much	
  of	
  a	
  typical	
  programmer’s	
  day	
  is	
  spent	
  actually	
  
programming?	
  	
  
PHYS20762	
  Lecture	
  1	
  
Programming	
  
25%	
  
Debugging	
  
25%	
  Documenta3on	
  
10%	
  
Design	
  
20%	
  
Mee3ngs	
  
20%	
  
PHYS20762	
  Lecture	
  1	
  
Onward… 
C++	
  is	
  great,	
  but…	
  
•  There	
  is	
  an	
  overhead	
  of	
  ‘structure’	
  needed	
  in	
  your	
  code	
  
•  There	
  are	
  no	
  ‘scienAfic/math’	
  libraries	
  built	
  in	
  to	
  the	
  language	
  
–  Plenty	
  of	
  add-­‐ons	
  
•  It’s	
  fairly	
  plaxorm-­‐dependent	
  
–  You	
  can’t	
  send	
  the	
  source	
  code	
  to	
  your	
  friend	
  easily	
  
•  It’s	
  fast,	
  but	
  you	
  o]en	
  don’t	
  need	
  that	
  parAcularly	
  
PHYS20762	
  Lecture	
  1	
  
MATLAB	
  
•  MATLAB	
  is	
  the	
  most	
  widely-­‐used	
  interpreted	
  scienAfic	
  compuAng	
  package	
  
–  i.e.	
  you	
  will	
  probably	
  need	
  to	
  know	
  it	
  later	
  
–  It’s	
  also	
  VERY	
  handy	
  to	
  know	
  how	
  to	
  use	
  it	
  for	
  your	
  degree	
  
•  A]er	
  this	
  course	
  I	
  don’t	
  want	
  to	
  hear	
  people	
  moaning	
  about	
  Easyplot!	
  
•  MATLAB’s	
  advantages	
  
–  Interpreted	
  –	
  no	
  messing	
  around	
  between	
  wriAng,	
  compiling	
  and	
  running	
  
–  Lots	
  of	
  built-­‐in	
  libraries	
  for	
  scienAsts	
  
–  Plaxorm	
  independent.	
  ‘Write	
  once,	
  run	
  anywhere’	
  (nearly)	
  
•  MATLAB’s	
  disadvantages	
  
–  Interpreted,	
  so	
  somewhat	
  slower	
  than	
  compiled	
  languages	
  for	
  big	
  tasks	
  
–  Like	
  many	
  library-­‐heavy	
  commercial	
  packages,	
  it’s	
  expensive	
  
–  But	
  you	
  won’t	
  noAce	
  either	
  of	
  these!	
  
PHYS20762	
  Lecture	
  1	
  
Reminders:	
  Workspace/Command	
  Window	
  
PHYS20762	
  Lecture	
  1	
  
Reminders:	
  Edit	
  Window	
  
PHYS20762	
  Lecture	
  1	
  
Reminders:	
  Variables	
  in	
  MATLAB	
  
•  (Reminder:	
  A	
  variable	
  is	
  a	
  unit	
  of	
  data	
  with	
  a	
  name,	
  
which	
  is	
  available	
  to	
  the	
  program)	
  
•  Simple	
  variables	
  
–  comment = ‘This is a string’; % Can put comments 
after the definition!
–  a = 1; % Integers!
–  b = 2.883; % Reals!
–  c = 1.2*a + b; % Formulae!
–  x = 1; y = 2; % Multiple definitions per line!
–  v = [1 5 2 6]; % vector(row vector)–square brackets!!
–  m = [1 5;3 8]; % 2x2 matrix!
–  n = [0 1+7]; % Expression in a definition!
–  p = [y(2) 7 y(3)]; % Array indexing!
PHYS20762	
  Lecture	
  1	
  
Reminders:	
  Defining	
  and	
  indexing	
  arrays	
  
x = 1:2:10 % First:increment:last!
!
x =   1     3     5     7     9!
!
g = 1:4; % Row vector!
h = g’; % Transpose makes column vector!
i = [1;3;4;5]; % Or define column vector explicitly!
!
!
This is all quite different from other languages!
!
!
PHYS20762	
  Lecture	
  1	
  
Reminders:	
  Indexing	
  
x = [1.1 -2.2 3.3 -4.4 5.5];!
!
x(3) is 3.3!
x(1:2) is [1.1 -2.2]!
x(1:2:5) is [1.1 3.3 5.5]!
!
!
m = [1 2 3;-2 -3 -4;3 4 5];!
m(6) is 4 – weird but true…!
m(2,3) is -4!
m(3,:) is [3 4 5]!
m(:,2) is [2;-3;4]!
m(1:2,3:4) is [2 3;-3 -4]	
  
PHYS20762	
  Lecture	
  1	
  
1     2     3!
-2    -3    -4!
3     4     5!
1     2     3!
-2    -3    -4!
3     4     5!
Reminders:	
  Func3ons	
  
There	
  are	
  lots	
  of	
  funcAons	
  and	
  constants	
  available	
  to	
  you:	
  
	
  
Math:	
   	
   	
  +	
  -­‐	
  *	
  /	
  ^	
  ()	
  
Comparison:	
  ==	
  	
  <	
  	
  >	
  	
  ~=	
   	
  (these	
  return	
  1/0	
  for	
  ‘true’/’false’)	
  
Logical: 	
   	
  &	
  | 	
   	
   	
  (also	
  return	
  1/0	
  for	
  ‘true’/’false’)	
  
Numerical: 	
  Inf	
  j	
  NaN	
  pi	
  
FuncAons: 	
  abs	
  exp	
  log	
  log2	
  log10	
  mod	
  real	
  imag	
  round	
  sign	
  	
  
Trig: 	
   	
  sin	
  cos	
  tan	
  asin	
  acos	
  atan	
  (etc.)	
  
Specialised: 	
  besselj	
  factorial	
  legendre	
  	
  (etc.)	
  
	
  
Use	
  the	
  Quick	
  Reference	
  Booklets	
  
	
  
BIG	
  TIP:	
  	
  Someone	
  will	
  probably	
  have	
  wanted	
  to	
  do	
  the	
  same	
  job	
  as	
  you.	
  That	
  
funcAon	
  already	
  exists,	
  you	
  just	
  have	
  to	
  FIND	
  IT.	
  
PHYS20762	
  Lecture	
  1	
  
Reminders:	
  Let’s	
  plot	
  some	
  data	
  
x = 0:pi/20:2*pi; % Make some x values!
y = sin(x); % Make some y values as a fn. of x!
!
plot(x,y);	
  
PHYS20762	
  Lecture	
  1	
  Hint: also try linspace 
Reminders:	
  How	
  about	
  another	
  one?	
  
x = 0:pi/20:2*pi; % Make some x values!
z = (x-2).^2+2; % Make some z!
% (x-2)^2+2 doesn’t work!!
plot(x,z); % Over-writes first figure	
  
PHYS20762	
  Lecture	
  1	
  
Matrix	
  and	
  Array	
  Mul3ply/Power	
  –	
  ‘a	
  Gotcha’	
  
This is something *very* particular to MATLAB: 
•  * is used for matrix multiplication 
•  .* is used for element-by-element (array) multiplication 
•  ^ is used for matrix powers 
•  .^ is used for element-by-element (array) powers 
PHYS20762	
  Lecture	
  1	
  
>> a = [1 2;3 4]!
a =!
     1     2!
     3     4	
  
>> a^2!
ans =!
     7    10!
    15    22!
>> a.^2!
ans =!
     1     4!
     9    16!
a^2 is equivalent to a*a (matrix multiplication) 
…and	
  for	
  mul3plica3on	
  
>> a = [1 2;3 4]!
!
a =!
!
     1     2!
     3     4!
!
>> b=[1 1;1 1]!
!
b =!
!
     1     1!
     1     1!
PHYS20762	
  Lecture	
  1	
  
>> a*b!
!
ans =!
!
     3     3!
     7     7!
!
>> a.*b!
!
ans =!
!
     1     2!
     3     4!
Some	
  other	
  plot	
  types	
  
•  (Use	
  the	
  Quick	
  Reference	
  Booklets)	
  
PHYS20762	
  Lecture	
  1	
  
polar(x,y) bar(x,y) 
loglog(x,y) semilogx(x,y) 
Code	
  recommenda3ons	
  
•  Microso]	
  Excel	
  –	
  part	
  of	
  Office,	
  okay	
  for	
  basic	
  work	
  and	
  data	
  collecAon	
  
•  MATLAB	
  (hPp://www.mathworks.co.uk/	
  )	
  
–  Students	
  can	
  use	
  this	
  anywhere	
  you’re	
  connected	
  to	
  the	
  Uni	
  network	
  
–  Including	
  VPN	
  (hPp://www.itservices.manchester.ac.uk/vpn/)	
  
•  MathemaAca	
  (hPp://www.wolfram.com/)	
  
–  Awesome	
  so]ware,	
  but	
  less	
  used	
  than	
  MATLAB	
  
–  Also	
  have	
  a	
  site	
  license,	
  but	
  easier	
  to	
  use	
  Cluster	
  computers	
  
•  Python	
  (hPp://www.python.org/	
  )	
  
–  Use	
  Python	
  2.7.x	
  (not	
  3.x)	
  as	
  there’s	
  more	
  code	
  made	
  for	
  it	
  
–  Get	
  the	
  excellent	
  Canopy	
  package	
  (any	
  OS):	
  
hPps://www.enthought.com/products/canopy/	
  	
  
PHYS20762	
  Lecture	
  1	
  
Lab	
  Sessions	
  
•  Today:	
  MATLAB	
  Refresher	
  and	
  PracAce	
  
•  Lab	
  Sessions	
  are	
  10am	
  to	
  1pm	
  on	
  Tuesdays	
  or	
  Fridays	
  
–  (about)	
  Half	
  of	
  you	
  on	
  Tuesdays,	
  Half	
  of	
  you	
  on	
  Fridays.	
  
–  Computer	
  Lab	
  3.58	
  
–  Demonstrators	
  are	
  on	
  hand	
  only	
  at	
  these	
  Ames;	
  make	
  use	
  of	
  them	
  
•  At	
  other	
  Ames	
  you	
  may	
  carry	
  out	
  work	
  on	
  any	
  of	
  the	
  Schuster	
  cluster	
  
computers	
  
	
  
•  Refer	
  to	
  the	
  Ametable	
  and	
  deadlines	
  to	
  work	
  out	
  when	
  to	
  hand	
  in	
  your	
  
project	
  work:	
  
–  hPp://theory.physics.manchester.ac.uk/~hywel/phys20762/phys20762-­‐
Ametable/	
  
PHYS20762	
  Lecture	
  1