Seaton, Nigel [WorldCat Identities] Seaton, Nigel Overview Works: 9 works in 17 publications in 1 language and 117 library holdings Genres: Conference papers and proceedings Academic theses Roles: Other, Author, Editor Publication Timeline . Most widely held works by Nigel Seaton Characterisation of porous solids VIII : proceedings of the 8th International Symposium on the Characterisation of Porous Solids by International Symposium on the Characterisation of Porous Solids( ) 9 editions published in 2009 in English and held by 103 WorldCat member libraries worldwide This book is the proceedings of the 8th International Symposium on the Characterisation of Porous Solids that took place in Edinburgh, 10-13th June 2008 Characterization of Porous Solids VII, Volume 160 : Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26-28 May 2005 by P. L Llewellyn( ) 1 edition published in 2006 in English and held by 5 WorldCat member libraries worldwide The 7th International Symposium on the Characterization of Porous Solids (COPS-VII) was held in the Congress Centre in Aix-en-Provence between the 25th-28th May 2005. There were 36 oral presentations and 166 posters and around 230 guests from 27 countries. The symposium covered recent results of fundamental and applied research on the characterization of porous solids. Papers relating to characterization methods such as gas adsorption and liquid porosimetry, X-ray techniques and microscopic measurements as well as the corresponding molecular modelling methods were given. These characterization Molecular simulation studies in periodic mesoporous silicas SBA-2 and STAC-1 : model development and adsorption applications by Carlos Augusto Ferreiro Rangel( ) 1 edition published in 2011 in English and held by 2 WorldCat member libraries worldwide Adsorption is a low-energy separation process especially advantageous when the components to be separated are similar in nature or have a low molar concentration. The choice of the adsorbent is the key factor for a successful separation, and among them periodic mesoporous silicas (PMS) are of importance because of their pore sizes, shapes and connectivity. Furthermore, they can be modified by post-synthesis functionalisation, which provides a tool for tailoring them to specific applications. SBA-2 and STAC-1 are two types of PMS characterised by a three-dimensional pore system of spherical cages interconnected by a network of channels whose formation process was until now obscure. In this work the kinetic Monte Carlo (kMC) technique has been extended to simulate the synthesis of these complex materials, presenting evidence that the interconnecting network originates from spherical micelles touching during their close-packing aggregation in the synthesis. Moreover, for the first time atomistic models for these materials were obtained with realistic pore-surface roughness and details of the possible location of its interaction sites. Grand Canonical Monte Carlo (GCMC) simulations of nitrogen, methane and ethane adsorption in the materials pore models show excellent agreement with experimental results. In addition, their potential as design tools is explored by introducing surface groups for enhancing CO2 capture; and finally, application examples are presented for carbon dioxide capture from flue gases and for natural gas purification, as well as in the separation of n-butane / iso-butane isomers Computer simulations of adsorption and molecular recognition phenomena in molecularly imprinted polymers by Eduardo Manuel de Azevedo Dourado( ) 1 edition published in 2011 in English and held by 2 WorldCat member libraries worldwide Molecularly imprinted polymers (MIPs) are a novel, promising family of porous materials with potential applications ranging from separations, chemical sensing and catalysis to drug delivery and artificial immunoassays. The unique feature of these materials is their biomimetic molecular recognition functionality. Molecular recognition is the biological phenomenon of specific, selective and strong association between a substrate and a ligand. In man made MIPs this functionality is implemented via templated synthesis protocol. MIPs are synthesized in the presence of additional template molecules which form complexes with functional monomers in the pre-polymerization mixture. After polymerization, the template is removed, leaving cavities in the structure which are complementary in shape and interaction patterns to the template molecules. These cavities act as mimics of biological receptors and are able to recognize and rebind template molecules. Although the imprinting concept is simple in principle, synthesis of MIPs with precisely controlled characteristics and performance remains a challenging task. Composition, polymerization conditions, template removal process and application conditions all affect the properties of MIPs. The material is affected at different scales, but crucially at the microscopic level, the number, fidelity and accessibility of binding sites are dependent on all the factors mentioned. The full potential of these materials can only be achieved if researchers can control and optimize the properties of MIPs through detailed understanding of adsorption and molecular recognition processes in these materials. The objective of this work is to, using computer simulations and statistical mechanics; develop a fundamental description of MIP formation and function, and to link morphological features of the model materials to their molecular recognition capabilities. In general, molecular simulations employed in this study should allow easier and more efficient exploration of a vast number of factors influencing the behaviour of MIPs. At the heart of the approach developed in this thesis is a computational strategy that imitates all the stages of MIP formation and function. First, the model simulates the pre-polymerization mixture, allowing the formation of template-functional monomer complexes. (This stage is implemented via canonical Monte Carlo simulation). Complexes can have different structures, depending on the chemical nature of template and functional monomer; therefore complexes can have a range of association constants. The distribution of template-functional monomer complexes also translates into a distribution of binding sites of different specificity after template removal. In the second stage of the process, adsorption simulations (grand canonical Monte Carlo) are performed for a variety of model MIPs prepared to assess the role of various processing conditions such as composition, density and binding sites degeneration. This strategy was first applied to a simplified description of MIP species in order to identify the minimal model capable of molecular recognition and thus shed the light on the very nature of this phenomenon. In the developed model, the molecular species are constructed from hard spheres, featuring small interaction sites on their surfaces. The bond between two interaction sites has the strength and topological features of a typical hydrogen bond. The model exhibits molecular recognition, being able to preferentially adsorb template molecules. The associations between template and functional monomers were analyzed and classified to describe the distribution of binding sites and their heterogeneity. Using this model, several experimental trends typically observed in MIP studies could be explained, such as maximum in the selectivity as a function of monomer concentration. Using this model, we were also able to explore hypothetical, alternative protocols for MIP synthesis in order to improve their performance. These include the use of alternative templates and the post-synthetic surface modifications of MIPs. The general strategy to modelling MIP, employed in this thesis, was then applied to a more detailed description of MIPs with realistic force field potentials for all the species involved. This more elaborate model is simulated with a combination of molecular dynamics (MD) and Monte Carlo techniques. This detailed model provided a wealth of information on various types of complexes observed in the pre-polymerization mixture. Specifically, it revealed the relative weight of different interactions in the complex and their role in the binding energy of adsorbates. These simulations also provided the comparison of the relative contribution of different types of interactions (van der Waals, Coulombic) involved in a molecular recognition process. We believe the insights gained in this work will contribute to the development of rational MIP design strategies. In the discussion of the results of the thesis we speculate on how these models can be further developed in order to generate quantitative predictions and what type of systems it would be interesting and important to investigate in the future Characterisation of Porous Solids 8: Proceedings of the 8th International Symposium on the Characterisation of Porous Solids. (9781847559043) by Nigel Seaton( Book ) 1 edition published in 2009 in English and held by 1 WorldCat member library worldwide Showtime : hits of stage & screen by Dalewool Auckland Brass( Recording ) 1 edition published in 2002 and held by 1 WorldCat member library worldwide Structural characterization of carbonaceous engine deposits by José Mário Cerqueira Pinto da Costa( ) 1 edition published in 2010 in English and held by 1 WorldCat member library worldwide Carbonaceous engine deposits tend to accumulate on most of the inner surfaces of the car engine. The presence of these deposits leads to a deteriorated efficiency of the engine and a number of adverse effects, such as higher propensity of the engine to knock. It has been proposed that selective adsorption of some of the fuel components in the porous deposits (and changing composition of the pre-combustion fuel) could be a contributing mechanism of the diminished efficiency of the engine. This, as well as other mechanisms of the deposits action, crucially depend on the porous structure of the material. Therefore, the aim of this investigation is to develop a method, which is able to accurately characterize the internal porous structure of the engine deposits and predict their adsorption properties at different conditions. This should allow us to assess whether the selective adsorption of fuel components is indeed a plausible contributing mechanism to the diminished performance of the engine. Accurate characterization of the engine deposits faces several difficulties due to their complex porous structure and chemical composition. A widely adopted approach in the characterization of activated carbons, which combines molecular simulation, specifically grand canonical Monte Carlo (GCMC) in slit pores, and experimental adsorption isotherms, is the starting point for the method suggested in this work. In this thesis, we will demonstrate that, by systematic modification of the solid-fluid interaction in the molecular simulation, we are able to correctly account for the chemical structural heterogeneity of the samples used. The new parameters of solid-fluid interaction allow us to extract representative pore size distributions and investigate the adsorption properties under different conditions of temperature and pressure, based on the obtained pore size distribution. Specifically, using the experimental data from a single ethane isotherm at 278K we accurately predict ethane adsorption at other temperatures and in different samples. Additionally, the proposed method is able to predict the adsorption of more complex hydrocarbons, i.e. n-butane and isobutane. The performance of the method is assessed by comparing the simulations results with the experimental adsorption measurements data on the engine deposits samples. Another important capability of the method is that it enables us to generate adsorption predictions of two key components commonly used to represent the combustion properties of the fuel, n-heptane and isooctane. We explore the equilibrium adsorption properties of these components based on the determined pore size distributions of the deposit samples. The results presented in the thesis highlight the importance of the adsorption in the internal porous structure of the engine deposits. The present study reinforces the value of molecular simulation combined with a limited number of experimental measurements, to accurately characterize heterogeneous carbonaceous materials and to make predictions at different conditions with sufficient precision Experimental and theoretical adsorption studies in tuneable organic-inorganic materials by Claudia Prosenjak( ) 1 edition published in 2009 in English and held by 1 WorldCat member library worldwide Adsorption processes are widely used for the storage and separation of gases in many industrial and environmental applications. The performance of the process depends strongly on the adsorbent and its interaction with the gases. Therefore, the idea of tailoring the adsorbent to the application by adapting the pore size and/or the chemical composition is very attractive. This work focuses on two groups of customizable hybrid materials: Firstly, in crystalline metal-organic frameworks (MOFs) the chemical and structural properties can be modified by changing the metal-oxide corner or the organic linker. Secondly, periodic mesoporous silica materials can be prepared with different pore sizes and geometries depending on the surfactant and its concentration and additionally modified with organic surface groups. The adsorption behaviour of the materials can be predicted by molecular simulation and thus the influence of modifications can be studied without the need of synthesising the material. For MOFs, the coordinates of the atoms can be obtained from XRD measurements. The quality of the predicted adsorption results was investigated for pure gas (methane, ethane, propane, nitrogen and carbon dioxide) and gas mixture (methane - carbon dioxide) adsorption on the metal-organic framework CuBTC. The comparison showed a good agreement between experimental and simulated results especially at low pressures. In order to create atomistic models for the mesoporous silica structures that are amorphous on the atomistic level, two existing simulation methods to model MCM-41-type materials were combined: micellar structures from coarse grained simulations that capture the phase separation in the surfactant/silica/solvent mixtures were used as input in kinetic Monte Carlo simulation that created the pore model on the atomistic level. The model created with this new methodology showed similar adsorption behaviour compared with a model created only with the kMC method using an ideal geometrical structure as micelle. The influence of modifications of the MOF structures (exchange of metal, linker length/composition and catenation) was investigated by Grand Canonical Monte Carlo simulations for hydrogen adsorption at low temperature and temperature controlled desorption. The peaks in the desorption spectra could be related to steps in the adsorption isotherms at 20 K Simulation of the synthesis of metal-organic framework materials by Naomi Faye Cessford( ) 1 edition published in 2014 in English and held by 1 WorldCat member library worldwide Audience Level 0 1 General Special Audience level: 0.60 (from 0.58 for Characteri ... to 0.79 for Characteri ...) Related Identities Reinoso, Francisco Rodriguez Other Editor Llewellyn, Philip Other Author Editor Kaskel, Stefan Other Editor Royal Society of Chemistry (Great Britain) University of Edinburgh International Symposium on the Characterisation of Porous Solids Rouqerol, Jean Düren, Tina Sarkisov, Lev Rangel, Carlos Augusto Ferreiro Useful Links Virtual International Authority File. Wikidata. Associated Subjects Analytical chemistry Band music Brass band music Chemistry, Inorganic Materials science New Zealand Porous materials Covers Alternative Names Nigel Seaton academisch docent Nigel Seaton Chemieingenieur Nigel Seaton Scottish chemical engineer Languages English (16) © 2022 OCLC, Inc. WorldCat Identities is covered by the OCLC ResearchWorks Terms and Conditions OCLC 6565 Kilgour Place, Dublin OH USA 43017 Cookie Notice Project Page | Feedback | Known Problems